Received: December 30, 1983; accepted: March 11, 1984

THE LOW TEMPERATURE INFRARED SPECTRUM OF THIAZYL FLUORIDE AND THE ADDITION COMPOUNDS OF THIAZYL FLUORIDE WITH BORON TRIFLUORIDE, PHOSPHORUS PENTA-FLUORIDE AND ARSENIC PENTAFLUORIDE

K.V. MILLER, W.C. EMKEN and L.C. DUNCAN

Chemistry Department, Central Washington University, Ellensburg, Washington 98926 (U.S.A.)

SUMMARY

The low temperature infrared spectra of the solid addition compounds of thiazyl fluoride, NSF, with the Lewis acids BF_3 , PF_5 , and AsF_5 were interpreted in terms of ionic compounds containing the thiazyl cation, (NS)⁺. The low temperature infrared spectrum of thiazyl fluoride itself was indicative of an unionized form in the solid state.

INTRODUCTION

Emken reported the existence of the thiazyl cation, $\left(\text{NS}\right)^+$, in explaining the significant shift to a higher wave number of the N-S stretching vibration in NSC1_(s) (1397 cm⁻¹) as compared to that in NSC1_(g) (1324 cm⁻¹) [1]. He proposed the shift to be the result of the ionization of $NSCI_{(q)}$ to (S) ⁺Cl⁻ ions in the solid state. Glemser and Koch prepared the thiazyl cation by reacting NSF with AsF₅ and SbF₅ [2,3]. The Raman spectra of these adducts suggested the formulation $(NS)^+(XF_{\kappa})$, X=As or Sb.

This work investigates the gas and solid state infrared spectra of thiazyl fluoride, NSF. The observed infrared shift for the N-S vibration in NSF (g) versus NSF (s) was small, indicating little or no change in the N-S force constant of NSF in the solid state. The addition compounds of NSF, with the Lewis acids BF_3 [4], PF_5 , and AsF_5 [2,3] were also studied. The preparation and infrared spectra of these compounds suggest they can be formalized as ionic compounds and can be expressed as $\left(\text{NS}\right)^+(\text{MF}_{\chi})^-(\text{MF}_{\chi})^+$ BF_a , PF₆, AsF₆⁻). Hitherto no infrared spectra of NSF·BF₃, and NSF·PF₅, or a low temperature infrared spectra of any of the above compounds have been reported.

0022-1139/84/\$3.00

EXPERIMENTAL

Materials

N-Fluoroformyliminosulfur difluoride, F₂SNOF, was prepared using the **procedure suggested by Clifford and Kobayashi[5]. Mercury(I1) fluoride (Ozark Mahoning) was used directly from the container. The color was light cream to white indicating the absence of HgO. Bis(imidosulfurdi**fluoride)mercury(II), $Hg(NSF_2)_2$, was prepared using the procedure of **Glemser, Mews, and Roesky [6]. Boron trifluoride (Baker), arsenic pentafluoride (Ozark Mahoning) and phosphorus pentafluoride (Matheson) were used directly from the cylinders.**

Apparatus

A glass-metal vacuum system was employed in the manipulation of volatile materials which are sensitive to air and moisture. The metal portion of the system consisted of a Heise-Monel Bourden tube vacuum gauge connected to the glass portion of the vacuum line with l/4-inch Monel tubing. All joints and stopcocks were lubricated with Fluorolube G.R.-90 (Fisher Scientific Co.).

Infrared Spectra

Infrared spectra were studied using a Perkin-Elmer model 521 spec t rophotometer (a reproducibility of \pm 2 cm^{-1} was obtained throughout the **range studied). Gaseous samples were investigated in a lo-cm glass cell** fitted with sodium chloride windows. The spectra of $NSF_{(s)}$ and the solic adducts $NSF·BF_{3(s)}$, $NSF·PF_{5(s)}$, and $NSF·AF_{5(s)}$ were studied in a low **temperature cell [1,7]. A copper block, connected to a cold finger and fitted with a KBr window, was cooled with liquid nitrogen. The cell was attached to the vacuum line and NSF (9) or the dissociated adduct was introduced into the cell; contact with the liquid nitrogen-cooled center window formed a thin film. The cell was then mounted in the infrared spectrophotometer and the spectrum was taken.**

126

Preparation

Thiazyl fluoride, NSF(g), was prepared by placing a hot water bath around a reaction vessel containing Hg(NSF₂)₂ while the vessel was **connected to the vacuum line and under reduced pressure [6,8]. Thiazyl fluoride was prepared only as needed since it readily polymerizes. The** adducts of NSF with AsF_5 , BF_3 , and PF_5 were formed by direct contact of **NSF with the respective Lewis acid [2,3,4]. Thiazyl fluoride and an excess of the appropriate acid were condensed into a glass vessel at -195O. The reactor was warmed to -23' to promote contact and reaction, followed by cooling to -63'. At that point, the excess volatile com**ponents were removed by vacuum transfer leaving an off-white (NSF·BF₃) or yellow (NSF^{+PF}₅, NSF⁺AsF₅) crystalline solid.

Properties

(a) NSF

Thiazyl fluoride gas at room temperature and low pressure displayed the infrared spectrum shown in Figure 1. The low temperature spectrum obtained for NSF_(s) is also illustrated in Figure 1. Assignments are de**tailed in Table 1 [9,10,11].**

TABLE 1

Infrared absorption position of gaseous and solid NSF

 (b) NSF $-BF_3$

Thiazyl fluoride (1.2 mmol) when mixed with BF₃ (2.5 mmol) consumed 1.11 mmol of BF_3 indicating a product mole ratio, $NSF·BF_3$, of 1.08:1. A **low pressure infrared spectrum of the volatiles removed at -63' produced** peaks characteristic of only $BF_{3(a)}$. A molecular weight of 66.50 was deter**mined from vapor density measurements of the volatiles above a sample of solid adduct at room temperature. The calculated value for a 1:l mixture** of NSF to BF₃ is 66.44. The low temperature infrared spectrum recorded for NSF⁺BF_{3(s)} is shown in Figure 1. Assignments are listed in Table 2. A **low pressure infrared spectrum of the volatiles produced from the dissociation of the solid adduct at room temperature showed peaks character**istic of only NSF_(q) and BF_{3(q)}. Attempts to measure the equilibrium dissociation pressure of the adduct, in the metal section of the vacuum **line, failed to provide reproducible data.**

 (c) NSF \cdot PF₅

Thiazyl fluoride (4.0 mmol) contacted with PF₅ (8.0 mmol) consumed 3.91 mmol of PF₅ giving a product mole ratio, $NSF\cdot PF_{F}$, of 1.02:1. The low **pressure infrared spectrum of the volatiles removed depicted peaks charac**teristic of only PF_{5(q)}. The recorded low temperature infrared spectrum for NSF^{.PF}_{5(s)} is shown in Figure 1. Assignments are given in Table 2. **Equilibrium dissociation measurements of the adduct produced erratic data.**

(d) NSF*AsF5

Thiazyl fluoride (5.0 mmol) contacted with AsF₅ (5.5 mmol) consumed 4.68 mmol of AsF₅ giving a product mole ratio, NSF.AsF₅, of 1.07:1. The low temperature spectrum obtained for NSF^{-ASF}_{5(s)} is shown in Figure 1. **Assignments are detailed in Table 2.**

DISCUSSION

The infrared spectrum of gaseous NSCl has previously been investigated [1]. The three fundamental vibrations, v_1 (NS stretch), v_2 (SCl stretch) and v_3 (bending) were directly observed at 1324.0, 417.8, and 271 cm⁻¹, **respectively. Nitrogen, sulfur and chlorine isotopes were used to verify the assignments. In addition, the infrared spectrum of solid films of NSCl on various substrates cooled with liquid nitrogen has been investigated [l]. The investigation showed the existence of two forms of the**

128

Fig. 1. Infrared spectra of NSF and NSF adducts.

TABLE 2

Infrared frequencies and assignments for NSF BF_{3(s)}, NSF PF_{5(s)} and $NSF·AsF_{5(s)}$

$NSF·BF_{3(s)}$	$NSF \cdot PF_{5(s)}$	$NSF·AsF_{5(s)}$	Assignment
cm^{-1}	cm^{-1}	cm^{-1}	
1443 m	1443 m	1442 m	$\overline{\text{NS}}^+[1,2,3,]$
1060 vs			BF_4 [7,12,13]
	820 vs		PF_{6} [12,14]
763 m			BF_{4}
		704 s 668 s	$AsF_6^{-}[2,3,7,14]$
	555 s		PF_6^-
528 s 520 s			BF_4 ⁻
		387 vs	AsF_6^-
Other bands			
1420 m	1430 m		(?)
	1240 w		(?)
	1200 w 1120 m 970 m		Kel-F Grease
878 m			BF ₃ [13]
	740 m		(?)
632 w			BF ₃
579 m			(?)
460 w			BF ₃

solid NSC1 films: one form with main peaks at 1346, 350, and 256 cm^{-1} ; and another form with main peaks at 1397.0, 205, and 140 cm⁻¹. In both, **the highest wave number was assigned to the N-S stretching vibration. The latter form was interpreted in terms of the existence of the thiazyl cation, (NS)+, while the other was interpreted in terms of a "molecular" form. Film appearance, band size and shapes, and isotopic substitution were used to verify those interpretations.**

The observed shift to a higher wave number of the N-S stretching vibration in NSF_(s) (1380 cm⁻¹) as compared to that in NSF_(g) (1372 cm⁻¹) **is only about one-tenth that reported for the NSCl solid form interpreted** in terms of the thiazyl cation, (S) ⁺. Therefore the NSF_(a) does not **appear to ionize in the solid state as does the NSCl.**

Thiazyl fluoride forms adducts with the Lewis acids PF₅, BF₃, and AsF₅ in a one-to-one molecular ratio of NSF to acid. The magnitudes of **the dissociation pressures of the adducts imply that the order of thermal** stability is NSF⁺AsF₅>NSF^{+BF}₃>NSF^{+PF}₅. This same stability trend has been observed for the CF₃SF₃ adducts with the same acceptors [7].

The low temperature infrared spectra of the solid adducts $NSF·BF_{3(s)}$ $NSF\cdot PF_{5(s)}$ and $NSF\cdot AsF_{5(s)}$ showed in each case peaks which can be assigned **to the appropriate anions. It is interpreted that the adducts exist as** ionic solids which can be formulated as $\text{(NS)}^+(M F_{\vee})^-.$

The NSF*BF3(s) spectrum shows a broad band centered at 1050 cm -1 which is assigned to \mathcal{v}_3 of the BF $_A$ anion [7,12]. The doublet with peaks at 520 and 528 cm⁻¹ are attributed to 10 B and 11 B $_{\nu_{\mu}}$ modes of the BF $_{4}^{-1}$ **anion [13]. The band at 763 cm-' is in the region expected for the WI** fundamental of the BF_{4} ⁻ anion. The narrow peak appearing at 1443 cm⁻¹ is **assigned to the thiazyl cation, (NS)+ [1,2,3].**

In the NSF:AsF $F_{5/5}$ spectrum the peaks appearing at 704 and 668 cm^{-1} are assigned to v_3 and v_1 of the AsF₆⁻ anion [2,3], while the peak at 378 cm⁻¹ is believed to result from v_{μ} of AsF₆⁻[12,14]. The v_2 vibrational band of AsF₆ was not observed. It is normally degenerate and $\frac{1}{2}$ infrared inactive (v_2 ~565 cm $^{-1}$) [9]. The sharp peak located at 1442 cm $^{-1}$ **is in the region expected for the (NS)+ ion.**

The NSF^{.pp}_{E(c)} spectrum has bands centered at 555 and 820 cm⁻¹ which are in the region expected for v_3 and v_2 of the PF₆ anion [12,14]. The **sharp peak at 1443 cm -1 is assigned to the (NS)+ ion.**

The infrared spectra of the volatiles above the adducts $NSF·BF_{3(s)}$ and NSF^{+PF}5(s) suggest that the adducts are completely dissociated in the **gas phase. The process of adduct formation and dissociation can be** described for NSF^{-BF}₃ as NSF + BF₃ $\stackrel{+}{\rightarrow}$ (NS)⁺(BF_A)⁻_(s).

REFERENCES

- **1 W.C. Emken, Ph.D. Thesis, Oregon State University, 1970.**
- 2 0. Glemser and W. Koch, Angew. Chem. Internat., 10 (1971) 127.
- **3 0. Glemser and W. Koch, Anales. Assoc. Quim. Argentina, 59 (1971) 143.**
- 4 0. Glemser, H. Richert and H. Haessler, Angew. Chem., 71 (1959) 524.
- **5 A. Clifford and C. Kobayashi, Inorg. Chem., 4 (1965) 571.**
- **6 0. Glemser, R. Mews and H.W. Roesky, Chem. Ber., 102 (1969) 1523.**
- **7 M. Kramar and L.C. Duncan, Inorg. Chem., 10 (1971) 647.**
- **8 0. Glemser and R. Mews, Advan. Inorg. Chem. Radiochem.,** 14 **(1972) 333.**
- **9 K. Nakamoto, Infrared Spectrum of Inorganic and Coordination Compounds 2nd Ed., Wiley, New York, 1970, p. 90.**
- **10 V. Hans Rickert and 0. Glemser, Z. Anorg. Allg. Chem., 307 (1961) 328.**
- **11 0. Glemser and H. Richert, Z. Anorg. Allg. Chem., 307 (1961) 313.**
- **12 M. Azeem, M. Brownstein and R.J. Gillespie, Can. J. Chem., 47 (1969) 4159.**
- **13 A. Muller, 0. Glemser and K. Scherf, Chem. Ber., 99_ (1966) 3568.**
- **14 G.M. Begun and A.C. Rutenberg, Inorg. Chem., 6 (1967) 2212.**