Received: December 30, 1983; accepted: March 11, 1984

THE LOW TEMPERATURE INFRARED SPECTRUM OF THIAZYL FLUORIDE AND THE ADDITION COMPOUNDS OF THIAZYL FLUORIDE WITH BORON TRIFLUORIDE, PHOSPHORUS PENTA-FLUORIDE AND ARSENIC PENTAFLUORIDE

K.V. MILLER, W.C. EMKEN and L.C. DUNCAN

Chemistry Department, Central Washington University, Ellensburg, Washington 98926 (U.S.A.)

SUMMAR Y

The low temperature infrared spectra of the solid addition compounds of thiazyl fluoride, NSF, with the Lewis acids BF_3 , PF_5 , and AsF_5 were interpreted in terms of ionic compounds containing the thiazyl cation, $(NS)^+$. The low temperature infrared spectrum of thiazyl fluoride itself was indicative of an unionized form in the solid state.

INTRODUCTION

Emken reported the existence of the thiazyl cation, $(NS)^+$, in explaining the significant shift to a higher wave number of the N-S stretching vibration in NSCl_(S) (1397 cm⁻¹) as compared to that in NSCl_(g) (1324 cm⁻¹) [1]. He proposed the shift to be the result of the ionization of NSCl_(g) to $(NS)^+$ Cl⁻ ions in the solid state. Glemser and Koch prepared the thiazyl cation by reacting NSF with AsF₅ and SbF₅ [2,3]. The Raman spectra of these adducts suggested the formulation $(NS)^+$ (XF₆)⁻,X=As or Sb.

This work investigates the gas and solid state infrared spectra of thiazyl fluoride, NSF. The observed infrared shift for the N-S vibration in NSF(g) versus NSF(s) was small, indicating little or no change in the N-S force constant of NSF in the solid state. The addition compounds of NSF, with the Lewis acids BF₃ [4], PF₅, and AsF₅ [2,3] were also studied. The preparation and infrared spectra of these compounds suggest they can be formalized as ionic compounds and can be expressed as (NS)⁺(MF_x)⁻(MF_x⁻⁼ BF₄⁻, PF₆⁻, AsF₆⁻). Hitherto no infrared spectra of NSF·BF₃, and NSF·PF₅, or a low temperature infrared spectra of any of the above compounds have been reported.

0022-1139/84/\$3.00

EXPERIMENTAL

<u>Materials</u>

N-Fluoroformyliminosulfur difluoride, F_2 SNOF, was prepared using the procedure suggested by Clifford and Kobayashi [5]. Mercury(II) fluoride (Ozark Mahoning) was used directly from the container. The color was light cream to white indicating the absence of HgO. Bis(imidosulfurdifluoride)mercury(II), Hg(NSF₂)₂, was prepared using the procedure of Glemser, Mews, and Roesky [6]. Boron trifluoride (Baker), arsenic pentafluoride (Ozark Mahoning) and phosphorus pentafluoride (Matheson) were used directly from the cylinders.

Apparatus

A glass-metal vacuum system was employed in the manipulation of volatile materials which are sensitive to air and moisture. The metal portion of the system consisted of a Heise-Monel Bourden tube vacuum gauge connected to the glass portion of the vacuum line with 1/4-inch Monel tubing. All joints and stopcocks were lubricated with Fluorolube G.R.-90 (Fisher Scientific Co.).

Infrared Spectra

Infrared spectra were studied using a Perkin-Elmer model 521 spectrophotometer (a reproducibility of $\pm 2 \text{ cm}^{-1}$ was obtained throughout the range studied). Gaseous samples were investigated in a 10-cm glass cell fitted with sodium chloride windows. The spectra of NSF_(s) and the solic adducts NSF·BF_{3(s)}, NSF·PF_{5(s)}, and NSF·AsF_{5(s)} were studied in a low temperature cell [1,7]. A copper block, connected to a cold finger and fitted with a KBr window, was cooled with liquid nitrogen. The cell was attached to the vacuum line and NSF_(g) or the dissociated adduct was introduced into the cell; contact with the liquid nitrogen-cooled center window formed a thin film. The cell was then mounted in the infrared spectrophotometer and the spectrum was taken.

126

Preparation

Thiazyl fluoride, NSF_(g), was prepared by placing a hot water bath around a reaction vessel containing Hg(NSF₂)₂ while the vessel was connected to the vacuum line and under reduced pressure [6,8]. Thiazyl fluoride was prepared only as needed since it readily polymerizes. The adducts of NSF with AsF₅, BF₃, and PF₅ were formed by direct contact of NSF with the respective Lewis acid [2,3,4]. Thiazyl fluoride and an excess of the appropriate acid were condensed into a glass vessel at -195⁰. The reactor was warmed to -23⁰ to promote contact and reaction, followed by cooling to -63⁰. At that point, the excess volatile components were removed by vacuum transfer leaving an off-white (NSF·BF₃) or yellow (NSF·PF₅, NSF·AsF₅) crystalline solid.

Properties

(a) NSF

Thiazyl fluoride gas at room temperature and low pressure displayed the infrared spectrum shown in Figure 1. The low temperature spectrum obtained for $NSF_{(s)}$ is also illustrated in Figure 1. Assignments are detailed in Table 1 [9,10,11].

TABLE 1

Compound		cm ⁻¹	Assignment [10,11]	Other bands	
NSF	(gas)	1372	ν1	{1255, 905, 709} (SOF ₂)	
		642	ν2	{1030} (SiF ₄)	
		366 [9,10]	ν ₃		
NSF	(solid)	1380	ν1	1305?	
		588	v ₂		
		372	ν ₃		

Infrared absorption position of gaseous and solid NSF

(b) NSF·BF3

Thiazyl fluoride (1.2 mmol) when mixed with BF_3 (2.5 mmol) consumed 1.11 mmol of BF_3 indicating a product mole ratio, $NSF \cdot BF_3$, of 1.08:1. A low pressure infrared spectrum of the volatiles removed at -63° produced peaks characteristic of only $BF_{3(g)}$. A molecular weight of 66.50 was determined from vapor density measurements of the volatiles above a sample of solid adduct at room temperature. The calculated value for a 1:1 mixture of NSF to BF_3 is 66.44. The low temperature infrared spectrum recorded for $NSF \cdot BF_{3(s)}$ is shown in Figure 1. Assignments are listed in Table 2. A low pressure infrared spectrum of the volatiles produced from the dissociation of the solid adduct at room temperature showed peaks characteristic of only $NSF_{(g)}$ and $BF_{3(g)}$. Attempts to measure the equilibrium dissociation pressure of the adduct, in the metal section of the vacuum line, failed to provide reproducible data.

(c) NSF · PF₅

Thiazyl fluoride (4.0 mmol) contacted with PF_5 (8.0 mmol) consumed 3.91 mmol of PF_5 giving a product mole ratio, $NSF \cdot PF_5$, of 1.02:1. The low pressure infrared spectrum of the volatiles removed depicted peaks characteristic of only $PF_{5(g)}$. The recorded low temperature infrared spectrum for $NSF \cdot PF_{5(s)}$ is shown in Figure 1. Assignments are given in Table 2. Equilibrium dissociation measurements of the adduct produced erratic data.

(d) NSF·AsF₅

Thiazyl fluoride (5.0 mmol) contacted with AsF_5 (5.5 mmol) consumed 4.68 mmol of AsF_5 giving a product mole ratio, $NSF \cdot AsF_5$, of 1.07:1. The low temperature spectrum obtained for $NSF \cdot AsF_5(s)$ is shown in Figure 1. Assignments are detailed in Table 2.

DISCUSSION

The infrared spectrum of gaseous NSC1 has previously been investigated [1]. The three fundamental vibrations, v_1 (NS stretch), v_2 (SC1 stretch) and v_3 (bending) were directly observed at 1324.0, 417.8, and 271 cm⁻¹, respectively. Nitrogen, sulfur and chlorine isotopes were used to verify the assignments. In addition, the infrared spectrum of solid films of NSC1 on various substrates cooled with liquid nitrogen has been investigated [1]. The investigation showed the existence of two forms of the

128

Fig. 1. Infrared spectra of NSF and NSF adducts.

TA	BL	.E	2

Infrared frequencies and assignments for $NSF \cdot BF_{3(s)}$, $NSF \cdot PF_{5(s)}$ and $NSF \cdot AsF_{5(s)}$

$NSF \cdot BF_{3(s)}$	NSF·PF _{5(s)}	NSF·AsF _{5(s)}	Assignment
cm ⁻¹	cm ⁻¹	cm ⁻¹	
1443 m	1443 m	1442 m	NS ⁺ [1,2,3,]
1060 vs			BF ₄ ⁻ [7,12,13]
	820 vs		PF ₆ ⁻ [12,14]
763 m			BF ₄
		704 s 668 s	AsF ₆ ^[2,3,7,14]
	555 s		PF6
528 s 520 s			BF4
		387 vs	AsF ₆
Other bands			
1420 m	1430 m		(?)
	1240 w		(?)
	1200 w 1120 m 970 m		Kel-F Grease
878 m			BF ₃ [13]
	740 m		(?)
632 w			BF3
579 m			(?)
460 w			BF3

solid NSC1 films: one form with main peaks at 1346, 350, and 256 cm⁻¹; and another form with main peaks at 1397.0, 205, and 140 cm⁻¹. In both, the highest wave number was assigned to the N-S stretching vibration. The latter form was interpreted in terms of the existence of the thiazyl cation, $(NS)^+$, while the other was interpreted in terms of a "molecular" form. Film appearance, band size and shapes, and isotopic substitution were used to verify those interpretations.

The observed shift to a higher wave number of the N-S stretching vibration in $NSF_{(s)}$ (1380 cm⁻¹) as compared to that in $NSF_{(g)}$ (1372 cm⁻¹) is only about one-tenth that reported for the NSC1 solid form interpreted in terms of the thiazyl cation, $(NS)^+$. Therefore the $NSF_{(g)}$ does not appear to ionize in the solid state as does the NSC1.

Thiazyl fluoride forms adducts with the Lewis acids PF_5 , BF_3 , and AsF_5 in a one-to-one molecular ratio of NSF to acid. The magnitudes of the dissociation pressures of the adducts imply that the order of thermal stability is NSF·AsF₅>NSF·BF₃>NSF·PF₅. This same stability trend has been observed for the CF₃SF₃ adducts with the same acceptors [7].

The low temperature infrared spectra of the solid adducts $NSF \cdot BF_{3(s)}$ $NSF \cdot PF_{5(s)}$ and $NSF \cdot AsF_{5(s)}$ showed in each case peaks which can be assigned to the appropriate anions. It is interpreted that the adducts exist as ionic solids which can be formulated as $(NS)^{+}(MF_{x})^{-}$.

The NSF·BF_{3(s)} spectrum shows a broad band centered at 1050 cm⁻¹ which is assigned to v_3 of the BF₄ anion [7,12]. The doublet with peaks at 520 and 528 cm⁻¹ are attributed to ¹⁰B and ¹¹B v_4 modes of the BF₄ anion [13]. The band at 763 cm⁻¹ is in the region expected for the v_1 fundamental of the BF₄ anion. The narrow peak appearing at 1443 cm⁻¹ is assigned to the thiazyl cation, (NS)⁺ [1,2,3].

In the NSF:AsF_{5(s)} spectrum the peaks appearing at 704 and 668 cm⁻¹ are assigned to v_3 and v_1 of the AsF₆ anion [2,3], while the peak at 378 cm⁻¹ is believed to result from v_4 of AsF₆ [12,14]. The v_2 vibrational band of AsF₆ was not observed. It is normally degenerate and infrared inactive (v_2v565 cm⁻¹) [9]. The sharp peak located at 1442 cm⁻¹ is in the region expected for the (NS)⁺ ion.

The NSF·PF_{5(s)} spectrum has bands centered at 555 and 820 cm⁻¹ which are in the region expected for v_3 and v_2 of the PF₆⁻ anion [12,14]. The sharp peak at 1443 cm⁻¹ is assigned to the (NS)⁺ ion.

The infrared spectra of the volatiles above the adducts $NSF \cdot BF_{3(s)}$ and $NSF \cdot PF_{5(s)}$ suggest that the adducts are completely dissociated in the gas phase. The process of adduct formation and dissociation can be described for $NSF \cdot BF_3$ as $NSF + BF_3 \ddagger (NS)^+ (BF_4)^-_{(s)}$. REFERENCES

- 1 W.C. Emken, Ph.D. Thesis, Oregon State University, 1970.
- 2 O. Glemser and W. Koch, Angew. Chem. Internat., 10 (1971) 127.
- 3 O. Glemser and W. Koch, Anales. Assoc. Quim. Argentina, 59 (1971) 143.
- 4 O. Glemser, H. Richert and H. Haessler, Angew. Chem., 71 (1959) 524.
- 5 A. Clifford and C. Kobayashi, Inorg. Chem., 4 (1965) 571.
- 6 O. Glemser, R. Mews and H.W. Roesky, Chem. Ber., <u>102</u> (1969) 1523.
- 7 M. Kramar and L.C. Duncan, Inorg. Chem., 10 (1971) 647.
- 8 O. Glemser and R. Mews, Advan. Inorg. Chem. Radiochem., 14 (1972) 333.
- 9 K. Nakamoto, Infrared Spectrum of Inorganic and Coordination Compounds 2nd Ed., Wiley, New York, 1970, p. 90.
- 10 V. Hans Rickert and O. Glemser, Z. Anorg. Allg. Chem., 307 (1961) 328.
- 11 O. Glemser and H. Richert, Z. Anorg. Allg. Chem., <u>307</u> (1961) 313.
- 12 M. Azeem, M. Brownstein and R.J. Gillespie, Can. J. Chem., <u>47</u> (1969) 4159.
- 13 A. Muller, O. Glemser and K. Scherf, Chem. Ber., 99 (1966) 3568.
- 14 G.M. Begun and A.C. Rutenberg, Inorg. Chem., 6 (1967) 2212.